Aerosol optical depth retrieval over land using data from AGRI onboard FY-4A

نویسندگان

چکیده

风云四号A星(FY-4A)是中国第二代静止气象卫星的首颗星,多通道扫描成像辐射计AGRI(Advanced Geosynchronous Radiation Imager)是搭载在FY-4Aä¸Šçš„ä¸»è¦å ‰å­¦è½½è·ä¹‹ä¸€ã€‚AGRIå ·æœ‰é«˜é¢‘çŽ‡è§‚æµ‹ç‰¹ç‚¹ï¼ˆæ¯å¤©è§‚æµ‹205æ¬¡ï¼‰ï¼Œåœ¨å¤§æ°”æ°”æº¶èƒ¶çš„é¥æ„Ÿé«˜é¢‘ç›‘æµ‹æ–¹é¢å ·æœ‰è‰¯å¥½åº”ç”¨æ½œåŠ›ï¼Œä½†ç›®å‰å®˜æ–¹è¿˜æœªå‘å¸ƒç›¸åº”çš„æ°”æº¶èƒ¶æ•°æ®é›†ã€‚æœ¬æ–‡æ—¨åœ¨é’ˆå¯¹AGRI数据的特点开发基于地表反射率比值库的反演算法以生产高精度的AGRIæ°”æº¶èƒ¶æ•°æ®é›†ã€‚æœ¬æ–‡é¦–å ˆåŸºäºŽå†åˆ†æžæ•°æ®å¯¹åŽ»äº‘åŽçš„AGRI L1çº§æ•°æ®è¿›è¡Œæ°”ä½“å¸æ”¶è®¢æ­£ï¼›ç„¶åŽåˆ©ç”¨èƒŒæ™¯æ°”æº¶èƒ¶å ‰å­¦åŽšåº¦AOD(Aerosol Optical Depthï¼‰å¯¹ä¸€ä¸ªæœˆå† çš„â€œæ¬¡æš—åƒå ƒâ€è¿›è¡Œå¤§æ°”æ ¡æ­£ä»¥èŽ·å–AGRI 0.65 μm 和 0.83 通道的地表反射率,进而获取这两个通道的地表反射率的比值,完成每个月的地表反射率比值库的构建;最后便可以基于已构建的地表反射率比值库实现地气解耦,完成气溶胶的遥感反演。该算法已被应用于2019å¹´5—10月京津冀地区的气溶胶反演,AGRI AOD反演结果与美国国家航天局发布的MODIS(Moderate-resolution Imaging Spectroradiometer)AODæ•°æ®é›†ã€æ—¥æœ¬æ°”è±¡åŽ å‘å¸ƒçš„AHI(Advanced Himawari Imager)AODæ•°æ®é›†çš„å¯¹æ¯”ç»“æžœæ˜¾ç¤ºå®ƒä»¬å ·æœ‰åŸºæœ¬ä¸€è‡´çš„ç©ºé—´åˆ†å¸ƒè¶‹åŠ¿ã€‚åˆ©ç”¨AERONET(Aerosol Robotic Network)数据验证的结果显示AGRI AODæ•°æ®é›†å ·æœ‰è¾ƒé«˜çš„ç²¾åº¦ï¼Œä¸”å ¶ç²¾åº¦è¦ä¼˜äºŽAHI AOD数据集和MODIS AOD数据集。AGRI AODæ•°æ®é›†çš„å¹³å‡ç»å¯¹è¯¯å·®ï¼Œå‡æ–¹æ ¹è¯¯å·®ï¼Œä¸Žåœ°åŸºæ•°æ®çš„ç›¸å ³ç³»æ•°å’Œè¯¯å·®è½åœ¨æœŸæœ›è¯¯å·®Â±(0.05+0.15AOD)AERONETèŒƒå›´å† çš„åæ¼”ç»“æžœæ‰€å çš„æ¯”ä¾‹åˆ†åˆ«æ˜¯0.09%,0.12%,0.91%和65.86%。上述验证结果表明基于地表反射率比值库的方法反演AGRI AODå ·æœ‰å¯è¡Œæ€§ï¼Œä¸”åæ¼”ç»“æžœå ·æœ‰è¾ƒé«˜çš„ç²¾åº¦ã€‚

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Validation of MODIS aerosol optical depth retrieval over land

[1] Aerosol optical depths (ta) are derived operationally for the first time from the MODIS (Moderate Resolution Imaging Spectroradiometer) measurements over vegetated and partially vegetated land at 0.47 and 0.66 mm wavelengths. The extensive validation made during July – September 2000 encompasses 315 co-located ta in space and time derived by MODIS and AERONET (Aerosol Robotic Network) from ...

متن کامل

Aerosol Optical Depth Retrieval over Land Using Meteosat-8 Seviri Data

Geostationary sensors bear the potential to derive and analyze daily and seasonal trends of aerosol optical depth (AOD) from spatially homogeneous data. However, to date most AOD retrieval algorithms from geostationary sensors are limited to sea surfaces. In this study, a multi-temporal technique to retrieve AOD over land from the Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) on-board...

متن کامل

Retrieval of aerosol optical depth over land surfaces from AVHRR data

The Advanced Very High Resolution Radiometer (AVHRR) provides a global, long-term, consistent time series of radiance data in several wavebands which are used for the retrieval of surface spectral reflectance, albedo and surface temperature. Long-term time series of such data products are necessary for studies addressing climate change, sea ice distribution and movement, and ice sheet coastal c...

متن کامل

Aerosol Optical Depth Spatial and Temporal Variability Using Satellite Data Over Indian Major Cities

Introduction: The study’s main aim is to investigate the long-term variation of Aerosol Optical Depth (AOD). It also aims to show the relationship between meteorological parameters. This study evaluates long-term (2010 to 2021) special and temporal changes over major Indian regions using satellite-based data from NASA’s Terra Satellite. Materials and Methods: This study was carried out during ...

متن کامل

Aerosol Optical Depth Retrieval over Land from Noaa Avhrr: Sensitivity Studies

The large archive of NOAA AVHRR data, covering more than 25 years, bears the potential to detect aerosol trends. However, remote sensing of aerosol optical depth over land is a difficult task, because the aerosol signal gets weaker over bright surface targets and the quality of the retrieval mainly depends on the quality of the surface reflectance estimate. In this study, we test the sensitivit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of remote sensing

سال: 2022

ISSN: ['1007-4619', '2095-9494']

DOI: https://doi.org/10.11834/jrs.20211366